DIFFERENCE OF SQUARES

(a2 - b2

Let's examine a special product: (a + b)(a - b)

What is the SAME about the two binomials? What is DIFFERENT about the two binomials?

EXPAND (FOIL) and SIMPLIFY (COLLECT LIKE TERMS):

(x + 9)(x - 9) (x + 4)(x - 4) (2x + 5)(2x - 5)

TO EXPAND SIMPLIFY THIS SPECIAL PRODUCT, USE THE FORMULA:

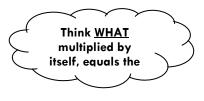
(a + b)(a - b) =_____

The result is called a difference of squares. Two perfect squares being subtracted.

NOTE THESE PERFECT SQUARES – AND THEIR SQUARE ROOTS:

Today we will learn to recognize and factor these difference of squares.

HOW TO SPOT A DIFFERENCE OF SQUARES



 $x^2 - 16$ $4y^2 - 49$

FACTORING A DIFFERENCE OF SQUARES

Factor: $x^2 - 49$

When you can recognize a difference of squares, it is easy to reverse the process and find the factors.

"Factoring" means find the binomials that "FOIL" to this expression!

Notice the signs between the factors.			
One will <u>always</u> have a	_ and the other will <u>always</u> have a		
Note: We always try to common factor first. Examples :			

FACTOR:

x ² - 64	x ² - 16	25x ² – 36	9x ² – 121

FACTOR. You will have to COMMON FACTOR FIRST!!

2x ² – 50	3x ² – 48	5x ² – 500	75x ² – 27
27 30		<u> </u>	/ 5/ 2/

The area of the top of a classroom desk is represented by the expression $2500 - x^2$. Ex:

a) Determine the length and width of the desk

 $A = 2500 - x^2$

b) Find the actual dimensions if x = 10 cm. c) Determine the actual area